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LElTER TO THE EDITOR 

Lattice animals and percolation 

C Domb 
Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, UK 

Received 8 September 1976 

Abstrrrt. A brief analysis is undertaken of the statistics of lattice animals (connected 
clusters) of n cells, and the results are applied to the site percolation problem. Recent 
proposals by Stauffer and Leath are examined, and an alternative interpretation is offered of 
the relation between percolation critical exponents and cluster statistics. 

A laftice animal is a connected cluster formed by unit cells of a lattice with no cut-point. 
The alternative term polyomino as a generalization of domino was introduced by 
Golomb (1954). Several papers and articles have been written on the statistics of n cell 
animals (see e.g. Lunnon 1972 for references). It is usual to differentiate between free 
animals in which two clusters which can be derived from one another by a symmetry 
operation of the lattice are regarded as identical, and fixed animals in which they are 
regarded as different. In physical applications to lattice statistics we are usually 
concerned with fixed animals. 

The most important mathematical result established so far concerns the total 
number W(n) of fixed n-animals. Klarner (1967) showed that these n-animals are 
super-multiplicative, and hence deduced that asymptotically 

The most extensive exact enumerations of n-animals are due to Sykes and his 
collaborators in connection with the site percolation problem (see e.g. Sykes and Glen 
1976). For this purpose it is important to divide W(n) into sub-classes g(n ,  S') with 
site perimeter s' (we use s' to distinguish from the broken-bond surface perimeter s 
which enters in the Ising problem, see e.g. Domb 1976). From this the perimeter 
polynomials can be formed, 

and a great deal of useful information can be derived about percolation critical 
behaviour by manipulating appropriate series expansions (see e.g. Sykes et a1 
1976a, b, c). 

Every animal on a lattice corresponds uniquely to a strong embedding of a 
connected graph on the dual lattice (for graph-theoretical terminology see Essam and 
Fisher 1970). Hence the total number of n-animals is the total number of strong- 
embeddings of connected graphs with n vertices. In other enumerative problems of this 
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kind a successful fit to numerical data has been achieved by assuming that 4 ( n )  in (1) 
follows a power-law dependence on n, 

4 ( n )  - n-. (3) 
In a recent investigation of the behaviour of W(n) for simple hypercubical lattices of 
dimension d, Gaunt et al (1976) estimated the value of T for d = 2 to 6; however, the 
convergence of numerical data to the form (3) was slow, and this was attributed to the 
presence of a confluent singularity. 

The asymptotic behaviour of the function g ( n ,  sf) completely determines the cluster 
statistics in the neighbourhood of the critical percolation concentration pc. If we define 
the fth moment of the distribution of n-clusters by 

mob) or (v,) represents the mean number of clusters, ml(p) the mean concentration 
(which is identically p for p S p c ) ,  and m,(p) diverges for t 3 2 with standard percolation 
critical exponents. Formula (4) is valid for finite clusters (i.e. without the percolating 
cluster) for p >pc .  

In a previous article (Domb 1974) a distinction was drawn between compact clusters 
for which s ' -ne  (6  < l), and ramified clusters for which S I -  n, and it was argued that 
only ramified clusters play a significant part in critical percolation. Hence it is 
convenient to write 

s ' / n  = a, ( 5 )  

g(n, s') = h(n, a ) ,  (6) 
and to transform (4) into the form 

m,(p)= 1 n'h(n, a)p"(l-p)"" 
n.a 

(7) 

We should emphasize that equation (7) is exact and the only information required to 
calculate m,(p) is the form of h(n, a). There is no excluded volume effect to calculate 
which causes so much complexity in the corresponding Ising problem (Domb 1976). 

For any given n, possible values of a are discrete and range from a minimum, 
corresponding to the most compact cluster, to a maximum equal to (q - 2) + 2/n, and 
corresponding to a stiff chain (where q is the coordination number of the lattice). For 
large n we can reasonably merge these into a continuous distribution h(n, a ) +  
k(n, a)  da and replace the sum in a by an integral: 

(9 -2)  

m,(p)-x n n)" lo (1 - ~ ) ~ " k ( n ,  a) da. (8) 

If (1) and (3) are valid it is plausible to postulate for k(n, a) the form 

k(n, U )  - ( A ( u ) ) " ~ - ' ~ ,  (9) 
where both A(a)  and ra might vary with a;  except at critical points we might reasonably 
expect them to be analytic. It is easy to see using the method of steepest descents that if 
a. corresponds to the maximum of A@), A'(ao) = 0, and 

(10) 
1 

h = A(ao) 7 = rno-5. 
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Exact solutions are available for percolation problems for a variety of tree and cactus 
structures (Fisher and Essam 1961). The best known is the Bethe lattice for which 

(11) 5 In A = (q - 1) In(q - 1)-(q -2) ln(q -2) 7 = 2. 

However, a has only a single value (q - 2), and A (a) is therefore a 8-function. A better 
analogy with lattice percolation is provided by the expanded cactus (figure 1) for which 
a can lie between f and i. Using the solution of Fisher and Essam we readily find that 

In A(a) = a[ln 4- (a-' - 2) In(a-' - 2) - (3 -a-')  11-43 -a-')] Ta = 3. (12) 

F i e  1. Expanded cactus. 

When we come to calculate the integral in (8) we can use the method of steepest 
descents. For each p there is a unique a which satisfies 

A'(a)/A(a)  +In( 1 -p) = 0 (13) 
and which gives the dominant contribution to the integral. We then examine the sum in 
n as a function of p; replacing this by an integral there is a unique maximum given by 

a a=- 1-P  -[In p + a  ln(1 -p)] = 0 
aP P 

7 (14) 

which gives rise to critical behaviour. Relations (13) and (14) determine the critical 
values a,, p, and there is an additional relation for singular critical behaviour in (8), 

Pdl -  PAacNaC) = 1.  (1.5) 
If this quantity is less than 1 all the moments in (8) are analytic and there is no singular 
behaviour; if it is greater than 1 even m o b )  diverges and this represents the number of 
clusters (per site) which must be finite. 
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Expanding in the neighbourhood of pc we find that 

mob)-lPc-Pl3 dP)-lPc-Pl 

mzb)-,IPc-Pl-l mrb) - IPc-Pl-2r+3 

The exponents are thus the same as those obtained for a Bethe lattice, and we refer to 
them as classical exponents. 

In considering percolation for real lattices we first investigate the form of critical 
behaviour if we take A(a)  to be analytic but allow 7, to differ from the classical value. 
The discussion of the previous section remains valid, relations (13) and (14) determine 
p c  and a, as the coordinate of the maximum of the two variable function 

n In p + a  ln(1 - p )  + In A(a) ,  (17) 
and relation (15) must be satisfied at the critical point. 

We may note incidentally that (14) arises from differentiation with respect top, and 
is valid even if A(a) is non-analytic at a,. It is therefore worth subjecting this to 
numerical test; a particularly suitable lattice is the triangular lattice for which pc is 
known exactly to be equal to f (Sykes and Essam 1964). In figure 2 we have used the 
data of Sykes and Glen (1976) to calculate (a )  as a function of n for n-animals at p = f. It 
will be seen that successive values converge smoothly to 

(18) a c = I =  O-Pc)/Pc. 

mob) - IPc-p12Tc-3 

If we now examine the behaviour near p = pc, we find instead of (16) that 

(19) 
m l b )  - lPc-P12Tc-5 
my@) - Jpc-p)2Tc-2'-3. m2b) - IPc-P12Tc-7 

A = 2  (20) 

In standard exponent terminology 

and critical exponents depend only on one free parameter T~ (= re). 

1 / n  

Figure 2. ( U )  at critical percolation density for clusters of size M. Test of (I = (1  - p d / p ,  for 
site percolation, triangular lattice = 4). 
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This suggestion was put forward previously by the present author (Domb 1974) and 
agreement with numerical data is not unreasonable when d 33. However, Stauffer 
(1975a) pointed out that there is a clear disagreement with numerical data when d = 2, 
and he suggested the following modification in order to introduce a second parameter u 
and parallel Fisher's king droplet model (Fisher 1967). Assume that 

s'= an +An", (21) 
and 

(v , , ) -c  p"(1 -p)""A(a)"p(a)A""(l -p)Anon-Tc 

where A(a> is chosen as above, and p(a)  is chosen to satisfy 
a 

P b C ) ( l  -PA= 1. 
Near p = p ,  the dominant behaviour in (22) is given by 

(v,,)-n-''exp Bn" B - ( P c - p ) ,  (24) 

A = l/u, (25) 

and critical behaviour parallels that of the king droplet model; hence 

and as long as u < d  we can secure agreement with numerical data. 

in reasonable agreement with this modification. 
In a subsequent paper (Stauffer 1975b) Monte Carlo data were analysed and found 

However, if we examine this suggestion more closely a number of difficulties appear. 
Firstly in regard to the interpretation of the parameter u, Stauffer suggested that it 
represents the 'surface' contribution to the cluster; but this is geometrically impossible 
since u <$. In the Ising droplet model it is possible to argue (Fisher 1971) that (z is an 
'effective exponent' which takes account of excluded volume effects; but there are no 
excluded volume effects in percolation clusters, the exclusion being completely taken 
into account by the (1 -p)"' factor in (4). 

Again the suggested form (24) gives the result (25) only when p >pc  (paralleling 
T <  T, in the Fisher model). For p < p c  we must introduce the decay term 

(26) 
and critical exponents correspond to the maximum of the exponent in (26) as a function 
of n. Instead of (25) we now find 

(Y"> - n-T expEn"(Pc-p) - n(pc-p)'I, 

A =  l / ( l -v) ,  (27) 
and the symmetry between p >pc  and p <pc  is destroyed. 

It is well known of course that the Fisher droplet model is only satisfactory for T < T, 
(see e.g. Domb 1973). Attempts toadapt it to T >  T, (e.g. Reatto and Rastelli 1972) are 
based on approximations to the excluded volume which, as mentioned above, does not 
arise in percolation clusters. Hence the attempt by Stauffer (1975b) to use the formula 
of Reatto and Rastelli can be regarded as only empirical. 

More recently Leath (1976) has attempted to fit the function g(n, s') from Monte Carlo 
data. He suggested that the dependence on a near a, is of the form 

A(a)"n-'=exp -Dn2'[a -ac- (E/n')]* (28) 
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where 
In A(Q)  = -a In a +(a + l)Jn(a + 1). 

The choice of (29) was motivated by theoretical considerations of fractional dimen- 
sions. The exponent 4 plays the same role as U in Stauffer's formula (22), and the 
exponent t,b is dismissed as giving rise to lower order terms. Some details of the 
derivation have been criticized in a recent preprint by Stauffer (1976) concerning the 
distribution of cluster size and perimeter for two-dimensional percolation. 

A more serious criticism of assumption (29) is that it fails to provide a unique a,, pc 
from equations (13) and (14) since both of these equations give rise to the same relation 
(14); likewise relation (15) is satisfied for all a, p. 

However, the Monte Carlo data to which Leath fitted his formula are presumably 
reliable, and we should like to suggest the following alternative interpretation of his 
results; the exponent 2 4  should really be 1, the true A(a)  being given by 

In A(a)  = -a In a +(a + 1) ln(a + 1) -D(a  -a,)*. (30) 
(Leath's actual estimate for 2 4  was 040* 0.08.) The important new feature in Leath's 
formula would then be the shift term E/n". This feature is present in exact enumera- 
tions, as shown by figure 3, in which the histogram plots of the data of Sykes and Glen 
for the simple quadratic lattice with n = 10 and n = 17 have been smoothed to give 
continuous curves. 

a 

Fipm 3. Distribution of animals on the simple quadratic lattice. a =surface sites/bulk 
sites. 

The origin of this shift lies in the compactness of the clusters. When clusters are 
grouped according to the value of a, true ramification is reached only for sufficiently 
lakge n ; for example a completely compact square cluster of 16 spins will be included in 
the a = 1 group. 

If we recalculate the behaviour in the critical region with this modification, we will 
be led to a formula similar to Stauffer's in (28) with the second exponent 1+4 paralleling 
the second exponent U. 
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If we now return to our original postulate (9) and try to take account of the n-shift of the 
maximum, we might replace it by 

k(n, ~)-[A(a)-Oc(~)/n')l"n-'~. (31) 

4 ( n ) - n - T  exp-Fn'-'. (32) 

This means that for the total number of n-animals, formula (3) must be replaced by 

The exponential factor may then explain the slow convergence observed by Gaunt et a1 
(1976). 

Since the distribution of clusters at the critical concentration is well established as 
being of the form n-'=((Quinn eta1 1976, Gaunt and Sykes 1976) we must assume that 

P (a,) = 0. (33) 
We are then led to a result equivalent to that of Leath. 

However, the difficulty of the violation of scaling discussed in 0 5 is not resolved. So 
far no convincing argument has been given for scaling in percolation processes besides 
the analogy with critical behaviour in king and Heisenberg systems. Perhaps it is worth 
examining the numerical data again more critically. 

If scaling is to be preserved the most obvious fault to be remedied in the above 
treatment is that of analyticity in A(a)  at U,. If instead of (28) we take a dependence of 
the form 

A(a)"ri-'. exp -n(a -a,- (E/n">p, (34) 
by suitably relating ,y to + it is possible to restore scaling. But before pursuing such a 
postulate further we think it advisable to have more detailed numerical data and (if 
possible) better theoretical information about k(n, a) .  

This research is supported (in part) by the European Research Oftice of the US Army. 
The author has benefited from discussion and/or correspondence with G H Bishop, E 
Lieb, J W Essam, D S Gaunt, R J Harrison, D Stauffer, E Stoll and M F Sykes. 
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